

OBSERVATION SYSTEM

ICOS

pCO₂ sensors and measurements on moorings

Sensors inter-comparison results (FIXO3)

- NW Mediterranean Sea experiment (Biocarex)
- FIXO3/EMSO group (CNRS, NOC, HMCR, UGOT) + ICOS-FR group

WP12. Enhancement of pCO₂ & pH measurement technology on Fixed Observatories

Antares: pCO₂ optode, IR pCO₂₁ ISFET pCO₂ & pH at

2500 m

Pylos: pCO₂ optodes in deep water, upcoming

he Reed point: Open Ocean Otherveling elevant (FacC) weeks to integrate impear-open ocean feedpoint feervelones and to improve access/to see key trutalisticus for the broader ammanity.

Handbook of best practices

This handbook collects the "lared possibles" is all phases of the system conversing the extrin inhamiculari deals of data acquisition. It includes recommendations on from to produce high quality data among howards common methodologies and protocole within the Faci3 relatest.

and out more web was follow helder. Of COProject

FixC0 is a project financed by the European Commission through the 7th Framework Programme for Research, Grant Agreement 312460

Koljoe Fjord cabled observatory for FIXO3 pH/pCO2 intercomparison

FIXED-POINT

OBSERVATORIES

Bottom depth ca 42 m

NIVERSITY OF GOTHENBURG

A total of 15 instruments/sensors became available for the inter-comparison

- 4 different technologies (fluorometry, IR, ISFET-based and laser) from 5 different manufacturers for pCO2
- 4 different technologies (fluorometry, colorimetry, electrochemical and ISFETbased) from 5 different manufacturers for pH measurements

Instruments connected to power supply and communication : CONTROS HydroC® CO2, Seaguard®, PSI® pCO2 Pro CV + pump, PSI® pCO2 Pro+ pump, Franatech® CO2, SensorLab pH

Instruments not connected (standalone):

pH electrode from Univ. of Kyushu – no serial communication was prearranged; can easily work on internal batteries

pH/pCO2 ISFET –12 VDC-24VDC power adapter was missing, can easily operate on internal batteries

EXO2® **YSI** – arranging the on-line communication was rather complicated - hardware additions in the multiplexer were required - and it was decided to skip this; can easily operate on internal batteries

RCM9® - not a part of the inter-comparison, provided auxiliary data; can easily operate on internal batteries.

Deployment Apr 09 to June 03 = 55 days

For CONTROS: a warm-up time of **30 minutes** is needed depending on the environmental conditions (water temperature) and settings of the sensor

Measuring range: from 0 to 3.000 ppm (Standard calibration: from 200 to 1.000 ppm)

Resolution: < 1 ppm

Accuracy: ± 1% of upper range value (as the total sum of all errors).

Instrument	Parameter(s)	Interval	Antifouling	Sensing technology pH/pCO ₂
Contros HydroC™ CO₂	pCO ₂	1 min	Copper shield	NDIR
Aanderaa Seaguard®	<u>2*pCO₂,pH</u> ,O ₂ ,P,C,T	1 min	No	<u>Fluorescence</u>
PSI CO₂- Pro™ CV	pCO ₂	30 min	Pumped	NDIR
PSI CO₂- Pro™	pCO ₂	60 min	Pumped	NDIR
Franatech CO ₂	pCO ₂	1 sec	No	Tunable Laser Diode
2*pH electrode	рН	60 min	No	Electrochemical
2 *pH/2* pCO ₂ ISFET	рН/ <i>р</i> СО ₂	30 sec	No	ISFET
EXO2, YSI	pH/ORP C/T, BGA-PC, Turb, fDOM, O ₂	15 min	Wiper (every 6h)	Electrochemical
SensorLab	рН	15 min	No	Spectrophotometry
Aanderaa RCM9	O ₂ ,C/T, P, currents	15 min	No	-

Contros HydroC

multiplexer

Franatech CO2 PSI CO2 Pro CV Sensor Lab PSI CO2

In situ measurements for inter-comparison

- pH : spectrophotometric detection
- TA and DIC: potentiometric titration and acidification with LICOR (respectively) + standards

The pCO2 was calculated using the set of constants from Lueker et al. (2000). Nutrients were not measured so were not included into calculations

Most of data were recovered. Some gaps due to power failure

Important for the ICOS/EMSO communities to include 'on-board' standards or in situ DIC/TA sampling

The good ...

Fig.6a. Overview of pCO_2 *data recorded with* CONTROS HydroC^M.

Fig.8a. Overview of pCO_2 data recorded with PSI CO_2 -ProTM and PSI CO_2 -ProTM CV. The insert is a blow-up of data from the last part of the measurement campaign.

CONTROS HydroC[™] data were averaged over 15 min

Gaps in the data were due to power cut-offs and were not related to the sensor performance

The sensor demonstrated good tolerance towards fouling and only the last 10 days of data indicated fouling on the membrane surface

An constant offsets for the 3 sensors between the measured and calculated values are visible

Intercalibration efficiency ? Storage ?

Fig.7a. Overview of pCO_2 data recorded with Aanderaa pCO_2 optodes. The insert is a blow-up of data from the first part of the measurement campaign.

*Fig.10a. Overview of pCO*² *data recorded with pCO*² ISFET A and B.

The bad ...

Power failure and biofouling impacts on pCO2 data: the fouling, increasing with time, increased the pCO2 variability

*Fig.9a. Overview of pCO*² *data recorded with* Franatech® CO2.

Recovery of frame on June 3, 2014. Frame covered in slimy fouling, algae and sea grass. Changes in the local environment expected at the end when fouling was important. Examples of successful antifouling strategies: Contros with copper, PSI pumped with TBT, YSI EXO2 with wiper

Hourly to decadal variability of sea surface carbon parameters in the NW Mediterranean Sea

J. Boutin, L. Merlivat, D. Antoine, L. Beaumont, M. Golbol, V. Vellucci (CNRS, Sorbonne Univ., DT-INSU)

Institut national des sciences de l'Univers

- CARIOCA sensor (NKE): colorimetry system (Lefèvre et al., 1993)
- Compact (max pressure 4 bars)
- Available with real-time connection
- Deployed at 2 and 9 m with maintenance every 6 months
- Deployed with CTDO2 sensors
- Sensor modified in 2013 with pump to limit the noise due to the day light and the wind effect (pCO2 decreases when wind speed increases)

- Strong vertical variability between 3m & 10m depth during summer → Importance of measuring pCO₂ close to the surface ocean in stratified conditions
- Need HF measurements due to strong wind variability
- Comparison with measurements taken 18 years ago at DYFAMED site by CARIOCA sensors → for the first time estimate decadal variability from 2 multiyear time series of hourly pCO₂ measurements

Calibration check of CARIOCA-BIOCAREX pCO₂ with DIC/TA samples analyzed at SNAPO (LOCEAN)

pCO₂ estimated from (DIC, TA) diff (pCO₂ – pCO₂ (DIC, TA)) ~ 4.4 μ atm (uncertainty pCO₂(DIC, TA) ~ 5 μ atm)

Figure 4. (a) fCO_2 data from all three years; 1995 = dark triangles, 1996 = medium gray squares, and 1997 = light gray diamonds. (b) Temperature-normalized fCO_2 data from all three years; symbols are the same as for (a). (c) Sea-surface temperature data from all three years.

remove the 10m depth data during summer not representative of the surface because of vertical stratification

DYFAMED and BIOCAREX CARIOCA data fCO₂ at 13° C as a function of temperature

18-years variability :

DIC increase : 1.4 mmol/kg/yr

pH decrease: -2.2+/-0.1 10⁻³ pHunit/yr

This is ~15% more than the variability expected from atmospheric pCO_2 increase

- Strong interannual variability of frequency and intensity of winter convection events
- Signature of the contribution of the Atlantic Ocean as a source of anthropogenic carbon to the Mediterranean Sea through the strait of Gibraltar.